

SuperCollider Tutorial

 Chapter 4

By Celeste Hutchins

2005

www.celesteh.com

 Creative Commons License: Attribution Only

Controls

In our last chapter, we began to create something more musical by playing

every note in a scale, although out of order. Sometimes, we might just want to

skip a note. We need a way to make decisions. One such way is with if. if has

it's own helpfile. Highlight lowercase if and press apple-shift-?. If is also

explained briefly in the helpfile for Boolean.

A Boolean is a value that is either true or false. true and false are reserved

words in SuperCollider. We can send an if message to Booleans.

(

 ([true, false].choose).if(

 {

 "true".postln;

 }, {

 "false".postln;

 }

);

)

If you run the above code several times, “true” and “false” shout print out about

the same number of times in a random order, because [true, false].choose

ought to be true half the time and false the other half. The result of that

expression is a Boolean. We send an if message to the Boolean, which has two

arguments, both functions. The first function is evaluated if the Boolean is true.

The second function is evaluated if the Boolean is false.

boolean.if(trueFunction, falseFunction);

You can omit the false function if you want.

This syntax that we've been using, object.message(argument1, argument2, . .

. argumentN);, is the most commonly used syntax in SuperCollider programs.

It's called receiver notation. However, there is more than one correct syntax in

SuperCollider. There also exists a syntax called functional notation. It is more

commonly used with if messages than receiver notation. When you see if in the

helpfiles, the examples almost always use functional notation. Functional

notation is:

message(object, argument1, argument2, . . . argumentN);

The two notations are equivalent. You can replace one with the other at any

place in any program and it will not change the program. What this means for if,

is that you very commonly see:

if(boolean, trueFunc, falseFunc);

So our example would change to:

(

 if([true, false].choose, {

 "true".postln;

 }, {

 "false".postln;

 });

)

It works in exactly the same way.

Why are there multiple correct notations? It's confusing!

SuperCollider is based on many other programming languages, but the

language that it borrows most heavily on is one called Smalltalk. Smalltalk, like

SuperCollider, is an object-oriented language. When I took Programming

Languages, my teacher said that Smalltalk was the best object oriented

language and the only reason it wasn't the most popular was that the syntax

was insane.

James McCartney, the author of SuperCollider perhaps was trying to spare us

from the horrors of Smalltalk syntax and let us use receiver notation, which is

common across many object-oriented languages. Functional notation, however,

persists in if, probably because other languages have different ways of thinking

about if.

Let's go back to our musical program and give it a 50% chance of playing a

note and a 50% chance of resting:

(

 var func, arr;

 func = { arg ratio_arr, baseFreq = 440, detune = 10;

 var pitch;

 Routine.new({

 ratio_arr.scramble.do({ arg ratio, index;

 if([true, false].choose, {

 pitch = (ratio * baseFreq) + detune;

 Synth.new("example3", [\freq, pitch, \dur, 1]);

 });

 1.wait;

 });

 });

 };

 arr = [1/1, 3/2, 4/3, 9/8, 16/9, 5/4, 8/5];

 func.value(arr, 440, 10).play;

)

If we want to give it a 33.3% chance of resting (a 66% chance of playing), we

could change out if to look like if ([true, true, false].choose, { and

expand our array every time we want to change the probability. But what if we

want something to play 99% of the time? We would have to have 99 trues and

one false. Fortunately, there is a message you can use that returns a Boolean

based on percentage. To play 66% of the time, we would change our if to if

(0.66.coin, {

 (

 var func, arr;

 func = { arg ratio_arr, baseFreq = 440, detune = 10;

 var pitch;

 Routine.new({

 ratio_arr.scramble.do({ arg ratio, index;

 if(((2/3).coin), {

 pitch = (ratio * baseFreq) + detune;

 Synth.new("example3", [\freq, pitch, \dur, 1]);

 });

 1.wait;

 });

 });

 };

 arr = [1/1, 3/2, 4/3, 9/8, 16/9, 5/4, 8/5];

 func.value(arr, 440, 10).play;

)

coin is a message you can pass to SimpleNumber. It returns a true or false

value. The number that receives the message is the percent likelihood that it will

return true.

Boolean Expressions

Many arithmetic operations return Booleans. For example, we can test for

equivalency with ==

(

 a = 3;

 if (a == 3, {

 "true".postln;

 }, {

 "false".postln;

 });

)

Note that is two equal signs next to each other when we're testing for

equivalency. If you just use one equal sign, it means assignment. I often

accidentally type one equals sign when I mean to type two.

We can test for greater than or less than:

(

 a = 3;

 if (a > 4, {

 "true".postln;

 }, {

 "false".postln;

 });

)

(

 a = 3;

 if (a < 4, {

 "true".postln;

 }, {

 "false".postln;

 });

)

We can do Boolean operations. Some of the most important ones are not, and,
and or.

The easiest way to illustrate these is with truth tables. A truth table shows you

all possible combinations of true and false variables and what the results would

be. Any Boolean variable can be either true or false. This is a truth table for not:

Not:

true false

false true

Not is a unary operator. That means it only involves one object. The top of the

table shows a true input and a false input. The bottom of the table shows the

result. true.not returns false and false.not returns true.

And is a binary operator. Like +, -, *, / and %, it operates on two objects.

Lets’ say we have two variables, a and b, and either of them can be true or false.

We can put a along the top of the table and b down the left side. In the middle

we put the possible results of a and b.

true false

true true false

false false false

Or is also binary:

true false

true true true

false true false

So how do we code these? Let’s look again at not. Not is represented as !

(

 a = 2;

 if (!(a == 4) , {

 "true".postln;

 }, {

 "false".postln;

 });

)

Not just negates. It turns a false into a true and a true into a false. It can also be

combined with equivalency to test for not equals.

(

 a = 2;

 if (a != 4 , {

 "true".postln;

 }, {

 "false".postln;

 });

)

The last two examples are the same.

And is represented by &&:

(

 a = 3;

 b = 4;

 if ((a > 2) && (b < 5), {

 "true".postln;

 }, {

 "false".postln;

 });

)

Both (a > 2) and (b < 5) must be true for this expression to evaluate as true.

If one of them is false, the whole thing is false.

Or is represented by || (Those are vertical lines. On your Macintosh with an

American keyboard, they're over the slash \):

(

 a = 3;

 b = 4;

 if ((a > 2) || (b < 5), {

 "true".postln;

 }, {

 "false".postln;

 });

)

(

 a = 3;

 b = 4;

 if ((a < 2) || (b < 5), {

 "true".postln;

 }, {

 "false".postln;

 });

)

(

 a = 3;

 b = 4;

 if ((a > 2) || (b == 5), {

 "true".postln;

 }, {

 "false".postln;

 });

)

For these expressions to evaluate to true, only one part of it needs to be true.

If neither part of an or is true, then the whole thing is false.

While

We’ve used Boolean expressions to control the flow of execution of a program

with if. Another control structure is while. While is a message passed to a

function. The function must return either true or false. It is a test function.

There is another function passed in as an argument.

test_function.while(loop_function); If the test function is true, the loop

function gets run. Then the test function is run again. If it returns true again, the

loop function is run again. This continues until the test function returns false.

While the condition is true, the loop is executed.

(

 var add_amt, max_add, total;

 max_add = 0.5;

 total = 0;

 {total < 1}.while({

 add_amt = max_add.rand;

 // . . .

 total = total + add_amt;

 "in while loop".postln;

 });

)

While is a message sent to a function. Remember that receiver notation and

functional notation are equivalent. The following two lines are the same:

test_func.while(body_func);

while(test_func, body_func);

There are other Control Structures detailed in a help file called Control-

Structures. Highlight "Control-Structures" and press shift-apple-?

Problems

1. Re-write hello world from the first chapter using functional notation.

2. Write if statements using and or and not using Boolean values of true

and false to illustrate the truth tables, using all possible combinations of

true and false. For example:

(

if (! true, {

"true".postln;
}, {
"false".postln;
});

)
What do you expect each of them to print? Did the results you got from

running them match your expectations?

3. Write a function with returns a Routine. The function should take three

arguments: an array of pitches to chose from, and array of durations to

chose from and a total duration for the Routine. Play pitches in rhythm

for the duration and then stop. You may wish use arrays of arrays to

create rhythmic motifs or repeating pitch themes.

Project

Some songs, like Bingo or some German drinking songs, leave out particular

pitches on repetitions. Write a one or two minute piece that repeats a short

phrase but leaves notes out on the repeats.

